Computer Science II-Numerical Methods

Mid Sem, March 2, 2018 Each question carries 5 marks.

- 1. The trace of a square matrix A is denoted by tr(A) and is defined as the sum of diagonal elements of A. Write a one line Octave expression to compute the trace of a matrix A. Do not use any for end loops in your expression.
- 2. Find the bug in the function demobug(n) below and fix it without dismantling the break command.

```
function k=demobug(n) x = rand(1,n); \% \text{ return a matrix with random elements uniformly distributed on the interval } (0, 1). k = 1; while k \le n if x(k) > 0.6 break end k = k + 1; end fprintf('x(k)= %f for k=%d n=%d ,'x(k),k,n);
```

- 3. Write a newsqrt function in Octave to compute the square root of a positive number using Newton's method.
- 4. Let $g:[a,b] \to [a,b]$ and $g \in C^1[a,b]$ with |g'(x)| < 1 for $x \in [a,b]$. Let $p_0 \in [a,b]$ and $p_k = g(p_{k-1}), k \ge 1$. Show that there exists $p \in [a,b]$ such that $\lim_{k \to \infty} p_k = p$ and g(p) = p.
- 5. Find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in interval [1, 4].
- 6. Consider the function $f = sign(x)\sqrt{|x|}$. Show that the Newton's method does not converge to the root for any initial guess p_0 . Explain why it does not converge.
- 7. Let $f(x) = e^x x 1$. The Newton's method with $p_0 = \frac{1}{2}$ converges to a zero of f(x) but not quadratically. Modify Newton's method to improve the rate of this convergence.
- 8. Define condition number k(A) of a matrix A. Find k(A) when A is given by

$$\begin{bmatrix} 2 & 1 \\ 2 + \delta & 1 \end{bmatrix}$$

where δ is a small parameter and $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$.

9. Suppose the data $(x_i, f(x_i)), 0 \le i \le n$, is given. Recall that Lagrange's interpolation polynomial is given by $\varphi_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$ where $L_i(x) = \prod_{\substack{k=0 \ k \ne i}}^n \frac{(x-x_k)}{(x_i-x_k)}$. Show without direct computation

that
$$\sum_{i=0}^{n} L_i(x) = 1$$
.

10. If $f(x) = x^n$, then for $m \le n$, prove that the m-th divided difference $f[x_0, x_1, \dots, x_m] = \sum_{i=1}^n x_0^{\lambda_0} x_1^{\lambda_1} \cdots x_m^{\lambda_m}$ where $\lambda_0 + \lambda_1 + \dots + \lambda_m = n - m$ and $\lambda_i \ge 0$ are integers. Deduce that the n-th divided difference of a polynomial of degree n is its leading coefficient.

- 11. (a). If $\Delta f(x) = f(x+h) f(x), h > 0$, show that $\Delta^{n+1}p(x) = 0$ where p(x) is a polynomial of degree $\leq n$.
 - (b). Consider the following table

x	0	1	2	4
f(x)	1	3	9	81

Let $\varphi(x)$ denote the interpolating polynomial of degree ≤ 3 that interpolates f at the given set of points. Find $\varphi(3)$ without explicitly computing $\varphi(x)$. (Hint: Use part (a)).